14 Commits
v0.24 ... v0.28

Author SHA1 Message Date
dce917bfbb add --version, bump to v0.28 2018-01-12 19:10:44 +01:00
8f18f53aba add cpu model in output 2018-01-12 19:08:12 +01:00
d3f102b3b3 Typofix in readme (#61) 2018-01-12 13:58:04 +01:00
8bd093173d Fixed a few spelling errors (#60) 2018-01-12 11:46:36 +01:00
bfe5a3b840 add some debug 2018-01-12 10:53:19 +01:00
6a0242eea3 bump to v0.27 2018-01-11 15:36:41 +01:00
bc4e39038a fix(opcodes): fix regression introduced in previous commit
We were saying unknown instead of vulnerable when the count of lfence opcodes was low
This was not impacting batch mode or the final decision, just the human-readable output of the script.
2018-01-11 15:35:57 +01:00
62f8ed6f61 adding support for new /sys interface (#55)
* adding support for new /sys interface
* fix(objdump): prefer -d instead of -D, some kernels crash objdump otherwise
2018-01-11 12:23:16 +01:00
56b67f8082 Typo in README (#54) 2018-01-11 12:01:31 +01:00
52a8f78885 send warning to stderr. (#53)
With --batch json there must not be any other output on stdout, so redirect warnings to stderr will show the warning on the console and only the json output is on stdout.
2018-01-11 09:55:43 +01:00
a09a5ba38f bump to v0.25 to reflect changes 2018-01-11 09:08:29 +01:00
5a7d8d7edf Produce JSON output formatted for Puppet, Ansible, Chef... (#50)
Produce JSON output formatted for Puppet, Ansible, Chef...
2018-01-11 09:04:13 +01:00
49fdc6c449 Merge pull request #51 from cowanml/file_read_check_fixup
fixed file read test
2018-01-10 21:39:09 +01:00
af3de2a862 fixed file read test 2018-01-10 15:17:14 -05:00
2 changed files with 374 additions and 255 deletions

View File

@ -3,7 +3,7 @@ Spectre & Meltdown Checker
A simple shell script to tell if your Linux installation is vulnerable against the 3 "speculative execution" CVEs that were made public early 2018. A simple shell script to tell if your Linux installation is vulnerable against the 3 "speculative execution" CVEs that were made public early 2018.
Without options, it'll inspect you currently running kernel. Without options, it'll inspect your currently running kernel.
You can also specify a kernel image on the command line, if you'd like to inspect a kernel you're not running. You can also specify a kernel image on the command line, if you'd like to inspect a kernel you're not running.
The script will do its best to detect mitigations, including backported non-vanilla patches, regardless of the advertised kernel version number. The script will do its best to detect mitigations, including backported non-vanilla patches, regardless of the advertised kernel version number.
@ -40,6 +40,6 @@ However, some mitigations could also exist in your kernel that this script doesn
Your system exposure also depends on your CPU. As of now, AMD and ARM processors are marked as immune to some or all of these vulnerabilities (except some specific ARM models). All Intel processors manufactured since circa 1995 are thought to be vulnerable. Whatever processor one uses, one might seek more information from the manufacturer of that processor and/or of the device in which it runs. Your system exposure also depends on your CPU. As of now, AMD and ARM processors are marked as immune to some or all of these vulnerabilities (except some specific ARM models). All Intel processors manufactured since circa 1995 are thought to be vulnerable. Whatever processor one uses, one might seek more information from the manufacturer of that processor and/or of the device in which it runs.
The nature of the discovered vulnerabilities being quite new, the landscape of vulnerable processors can be expected to change over time, which is why this script makes the assumption that all CPUs are vulnerable, except if the manufacturer explicitely stated otherwise in a verifiable public announcement. The nature of the discovered vulnerabilities being quite new, the landscape of vulnerable processors can be expected to change over time, which is why this script makes the assumption that all CPUs are vulnerable, except if the manufacturer explicitly stated otherwise in a verifiable public announcement.
This tool has been released in the hope that it'll be useful, but don't use it to jump to conclusions about your security. This tool has been released in the hope that it'll be useful, but don't use it to jump to conclusions about your security.

View File

@ -8,7 +8,7 @@
# #
# Stephane Lesimple # Stephane Lesimple
# #
VERSION=0.24 VERSION=0.28
# Script configuration # Script configuration
show_usage() show_usage()
@ -22,7 +22,7 @@ show_usage()
Two modes are available. Two modes are available.
First mode is the "live" mode (default), it does its best to find information about the currently running kernel. First mode is the "live" mode (default), it does its best to find information about the currently running kernel.
To run under this mode, just start the script without any option (you can also use --live explicitely) To run under this mode, just start the script without any option (you can also use --live explicitly)
Second mode is the "offline" mode, where you can inspect a non-running kernel. Second mode is the "offline" mode, where you can inspect a non-running kernel.
You'll need to specify the location of the vmlinux file, and if possible, the corresponding config and System.map files: You'll need to specify the location of the vmlinux file, and if possible, the corresponding config and System.map files:
@ -33,12 +33,15 @@ show_usage()
Options: Options:
--no-color Don't use color codes --no-color Don't use color codes
-v, --verbose Increase verbosity level --verbose, -v Increase verbosity level
--no-sysfs Don't use the /sys interface even if present
--batch text Produce machine readable output, this is the default if --batch is specified alone --batch text Produce machine readable output, this is the default if --batch is specified alone
--batch json Produce JSON output formatted for Puppet, Ansible, Chef...
--batch nrpe Produce machine readable output formatted for NRPE --batch nrpe Produce machine readable output formatted for NRPE
--variant [1,2,3] Specify which variant you'd like to check, by default all variants are checked --variant [1,2,3] Specify which variant you'd like to check, by default all variants are checked
Can be specified multiple times (e.g. --variant 2 --variant 3) Can be specified multiple times (e.g. --variant 2 --variant 3)
IMPORTANT: IMPORTANT:
A false sense of security is worse than no security at all. A false sense of security is worse than no security at all.
Please use the --disclaimer option to understand exactly what this script does. Please use the --disclaimer option to understand exactly what this script does.
@ -64,7 +67,7 @@ in which it runs.
The nature of the discovered vulnerabilities being quite new, the landscape of vulnerable processors can be expected The nature of the discovered vulnerabilities being quite new, the landscape of vulnerable processors can be expected
to change over time, which is why this script makes the assumption that all CPUs are vulnerable, except if the manufacturer to change over time, which is why this script makes the assumption that all CPUs are vulnerable, except if the manufacturer
explicitely stated otherwise in a verifiable public announcement. explicitly stated otherwise in a verifiable public announcement.
This tool has been released in the hope that it'll be useful, but don't use it to jump to conclusions about your security. This tool has been released in the hope that it'll be useful, but don't use it to jump to conclusions about your security.
@ -85,6 +88,7 @@ opt_variant1=0
opt_variant2=0 opt_variant2=0
opt_variant3=0 opt_variant3=0
opt_allvariants=1 opt_allvariants=1
opt_no_sysfs=0
nrpe_critical=0 nrpe_critical=0
nrpe_unknown=0 nrpe_unknown=0
@ -94,13 +98,13 @@ __echo()
{ {
opt="$1" opt="$1"
shift shift
msg="$@" _msg="$@"
if [ "$opt_no_color" = 1 ] ; then if [ "$opt_no_color" = 1 ] ; then
# strip ANSI color codes # strip ANSI color codes
msg=$(/bin/echo -e "$msg" | sed -r "s/\x1B\[([0-9]{1,2}(;[0-9]{1,2})?)?[m|K]//g") _msg=$(/bin/echo -e "$_msg" | sed -r "s/\x1B\[([0-9]{1,2}(;[0-9]{1,2})?)?[m|K]//g")
fi fi
# explicitely call /bin/echo to avoid shell builtins that might not take options # explicitely call /bin/echo to avoid shell builtins that might not take options
/bin/echo $opt -e "$msg" /bin/echo $opt -e "$_msg"
} }
_echo() _echo()
@ -121,7 +125,7 @@ _echo_nol()
_warn() _warn()
{ {
_echo 0 "\033[31m${@}\033[0m" _echo 0 "\033[31m${@}\033[0m" >&2
} }
_info() _info()
@ -141,7 +145,7 @@ _verbose()
_debug() _debug()
{ {
_echo 3 "(debug) $@" _echo 3 "\033[34m(debug) $@\033[0m"
} }
is_cpu_vulnerable() is_cpu_vulnerable()
@ -218,7 +222,7 @@ parse_opt_file()
show_header show_header
echo "$0: error: $option_value is not a file" >&2 echo "$0: error: $option_value is not a file" >&2
exit 1 exit 1
elif [ ! -e "$option_value" ]; then elif [ ! -r "$option_value" ]; then
show_header show_header
echo "$0: error: couldn't read $option_value (are you root?)" >&2 echo "$0: error: couldn't read $option_value (are you root?)" >&2
exit 1 exit 1
@ -249,17 +253,20 @@ while [ -n "$1" ]; do
elif [ "$1" = "--no-color" ]; then elif [ "$1" = "--no-color" ]; then
opt_no_color=1 opt_no_color=1
shift shift
elif [ "$1" = "--no-sysfs" ]; then
opt_no_sysfs=1
shift
elif [ "$1" = "--batch" ]; then elif [ "$1" = "--batch" ]; then
opt_batch=1 opt_batch=1
opt_verbose=0 opt_verbose=0
shift shift
case "$1" in case "$1" in
text|nrpe) opt_batch_format="$1"; shift;; text|nrpe|json) opt_batch_format="$1"; shift;;
--*) ;; # allow subsequent flags --*) ;; # allow subsequent flags
'') ;; # allow nothing at all '') ;; # allow nothing at all
*) *)
echo "$0: error: unknown batch format '$1'" echo "$0: error: unknown batch format '$1'"
echo "$0: error: --batch expects a format from: text, nrpe" echo "$0: error: --batch expects a format from: text, nrpe, json"
exit 1 >&2 exit 1 >&2
;; ;;
esac esac
@ -284,6 +291,10 @@ while [ -n "$1" ]; do
show_header show_header
show_usage show_usage
exit 0 exit 0
elif [ "$1" = "--version" ]; then
opt_no_color=1
show_header
exit 1
elif [ "$1" = "--disclaimer" ]; then elif [ "$1" = "--disclaimer" ]; then
show_header show_header
show_disclaimer show_disclaimer
@ -322,14 +333,27 @@ pstatus()
pvulnstatus() pvulnstatus()
{ {
if [ "$opt_batch" = 1 ]; then if [ "$opt_batch" = 1 ]; then
case "$opt_batch_format" in case "$opt_batch_format" in
text) _echo 0 "$1: $2 ($3)";; text) _echo 0 "$1: $2 ($3)";;
nrpe) nrpe)
case "$2" in case "$2" in
UKN) nrpe_unknown="1";; UKN) nrpe_unknown="1";;
VULN) nrpe_critical="1"; nrpe_vuln="$nrpe_vuln $1";; VULN) nrpe_critical="1"; nrpe_vuln="$nrpe_vuln $1";;
esac esac
;; ;;
json)
case "$1" in
CVE-2017-5753) aka="SPECTRE VARIANT 1";;
CVE-2017-5715) aka="SPECTRE VARIANT 2";;
CVE-2017-5754) aka="MELTDOWN";;
esac
case "$2" in
UKN) is_vuln="unknown";;
VULN) is_vuln="true";;
OK) is_vuln="false";;
esac
json_output="${json_output:-[}{\"NAME\":\""$aka"\",\"CVE\":\""$1"\",\"VULNERABLE\":$is_vuln,\"INFOS\":\""$3"\"},"
;;
esac esac
fi fi
@ -438,7 +462,8 @@ if [ "$opt_live" = 1 ]; then
_warn "To run it as root, you can try the following command: sudo $0" _warn "To run it as root, you can try the following command: sudo $0"
_warn _warn
fi fi
_info "Checking for vulnerabilities against live running kernel \033[35m"$(uname -s) $(uname -r) $(uname -v) $(uname -m)"\033[0m" _info "Checking for vulnerabilities against running kernel \033[35m"$(uname -s) $(uname -r) $(uname -v) $(uname -m)"\033[0m"
_info "CPU is\033[35m"$(grep '^model name' /proc/cpuinfo | cut -d: -f2 | head -1)"\033[0m"
# try to find the image of the current running kernel # try to find the image of the current running kernel
# first, look for the BOOT_IMAGE hint in the kernel cmdline # first, look for the BOOT_IMAGE hint in the kernel cmdline
@ -534,46 +559,84 @@ umount_debugfs()
fi fi
} }
sys_interface_check()
{
[ "$opt_live" = 1 -a "$opt_no_sysfs" = 0 -a -r "$1" ] || return 1
_info_nol "* Checking whether we're safe according to the /sys interface: "
if grep -qi '^not affected' "$1"; then
# Not affected
status=OK
pstatus green YES "kernel confirms that your CPU is unaffected"
elif grep -qi '^mitigation' "$1"; then
# Mitigation: PTI
status=OK
pstatus green YES "kernel confirms that the mitigation is active"
elif grep -qi '^vulnerable' "$1"; then
# Vulnerable
status=VULN
pstatus red NO "kernel confirms your system is vulnerable"
else
status=UNK
pstatus yellow UNKNOWN "unknown value reported by kernel"
fi
msg=$(cat "$1")
_debug "sys_interface_check: $1=$msg"
return 0
}
################### ###################
# SPECTRE VARIANT 1 # SPECTRE VARIANT 1
check_variant1() check_variant1()
{ {
_info "\033[1;34mCVE-2017-5753 [bounds check bypass] aka 'Spectre Variant 1'\033[0m" _info "\033[1;34mCVE-2017-5753 [bounds check bypass] aka 'Spectre Variant 1'\033[0m"
_info_nol "* Checking count of LFENCE opcodes in kernel: "
status=0 status=UNK
if [ -n "$vmlinux_err" ]; then sys_interface_available=0
pstatus yellow UNKNOWN "$vmlinux_err" msg=''
if sys_interface_check "/sys/devices/system/cpu/vulnerabilities/spectre_v1"; then
# this kernel has the /sys interface, trust it over everything
sys_interface_available=1
else else
if ! which objdump >/dev/null 2>&1; then # no /sys interface (or offline mode), fallback to our own ways
pstatus yellow UNKNOWN "missing 'objdump' tool, please install it, usually it's in the binutils package" _info_nol "* Checking count of LFENCE opcodes in kernel: "
if [ -n "$vmlinux_err" ]; then
msg="couldn't check ($vmlinux_err)"
status=UNK
pstatus yellow UNKNOWN
else else
# here we disassemble the kernel and count the number of occurences of the LFENCE opcode if ! which objdump >/dev/null 2>&1; then
# in non-patched kernels, this has been empirically determined as being around 40-50 msg="missing 'objdump' tool, please install it, usually it's in the binutils package"
# in patched kernels, this is more around 70-80, sometimes way higher (100+) status=UNK
# v0.13: 68 found in a 3.10.23-xxxx-std-ipv6-64 (with lots of modules compiled-in directly), which doesn't have the LFENCE patches, pstatus yellow UNKNOWN
# so let's push the threshold to 70.
# TODO LKML patch is starting to dump LFENCE in favor of the PAUSE opcode, we might need to check that (patch not stabilized yet)
nb_lfence=$(objdump -D "$vmlinux" | grep -wc lfence)
if [ "$nb_lfence" -lt 70 ]; then
pstatus red NO "only $nb_lfence opcodes found, should be >= 70"
status=1
else else
pstatus green YES "$nb_lfence opcodes found, which is >= 70" # here we disassemble the kernel and count the number of occurences of the LFENCE opcode
status=2 # in non-patched kernels, this has been empirically determined as being around 40-50
# in patched kernels, this is more around 70-80, sometimes way higher (100+)
# v0.13: 68 found in a 3.10.23-xxxx-std-ipv6-64 (with lots of modules compiled-in directly), which doesn't have the LFENCE patches,
# so let's push the threshold to 70.
nb_lfence=$(objdump -d "$vmlinux" | grep -wc lfence)
if [ "$nb_lfence" -lt 70 ]; then
msg="only $nb_lfence opcodes found, should be >= 70, heuristic to be improved when official patches become available"
status=VULN
pstatus red NO
else
msg="$nb_lfence opcodes found, which is >= 70, heuristic to be improved when official patches become available"
status=OK
pstatus green YES
fi
fi fi
fi fi
fi fi
if ! is_cpu_vulnerable 1; then # if we have the /sys interface, don't even check is_cpu_vulnerable ourselves, the kernel already does it
pvulnstatus CVE-2017-5753 OK "your CPU vendor reported your CPU model as not vulnerable" if [ "$sys_interface_available" = 0 ] && ! is_cpu_vulnerable 1; then
else # override status & msg in case CPU is not vulnerable after all
case "$status" in msg="your CPU vendor reported your CPU model as not vulnerable"
0) pvulnstatus CVE-2017-5753 UNK "impossible to check ${vmlinux}";; status=OK
1) pvulnstatus CVE-2017-5753 VULN 'heuristic to be improved when official patches become available';;
2) pvulnstatus CVE-2017-5753 OK 'heuristic to be improved when official patches become available';;
esac
fi fi
# report status
pvulnstatus CVE-2017-5753 "$status" "$msg"
} }
################### ###################
@ -581,153 +644,176 @@ check_variant1()
check_variant2() check_variant2()
{ {
_info "\033[1;34mCVE-2017-5715 [branch target injection] aka 'Spectre Variant 2'\033[0m" _info "\033[1;34mCVE-2017-5715 [branch target injection] aka 'Spectre Variant 2'\033[0m"
_info "* Mitigation 1"
_info_nol "* Hardware (CPU microcode) support for mitigation: " status=UNK
if [ ! -e /dev/cpu/0/msr ]; then sys_interface_available=0
# try to load the module ourselves (and remember it so we can rmmod it afterwards) msg=''
modprobe msr 2>/dev/null && insmod_msr=1 if sys_interface_check "/sys/devices/system/cpu/vulnerabilities/spectre_v2"; then
fi # this kernel has the /sys interface, trust it over everything
if [ ! -e /dev/cpu/0/msr ]; then sys_interface_available=1
pstatus yellow UNKNOWN "couldn't read /dev/cpu/0/msr, is msr support enabled in your kernel?"
else else
# the new MSR 'SPEC_CTRL' is at offset 0x48 _info "* Mitigation 1"
# here we use dd, it's the same as using 'rdmsr 0x48' but without needing the rdmsr tool _info_nol "* Hardware (CPU microcode) support for mitigation: "
# if we get a read error, the MSR is not there if [ ! -e /dev/cpu/0/msr ]; then
dd if=/dev/cpu/0/msr of=/dev/null bs=8 count=1 skip=9 2>/dev/null # try to load the module ourselves (and remember it so we can rmmod it afterwards)
if [ $? -eq 0 ]; then modprobe msr 2>/dev/null && insmod_msr=1
pstatus green YES _debug "attempted to load module msr, ret=$insmod_msr"
else
pstatus red NO
fi fi
fi if [ ! -e /dev/cpu/0/msr ]; then
pstatus yellow UNKNOWN "couldn't read /dev/cpu/0/msr, is msr support enabled in your kernel?"
if [ "$insmod_msr" = 1 ]; then else
# if we used modprobe ourselves, rmmod the module # the new MSR 'SPEC_CTRL' is at offset 0x48
rmmod msr 2>/dev/null # here we use dd, it's the same as using 'rdmsr 0x48' but without needing the rdmsr tool
fi # if we get a read error, the MSR is not there
dd if=/dev/cpu/0/msr of=/dev/null bs=8 count=1 skip=9 2>/dev/null
_info_nol "* Kernel support for IBRS: " if [ $? -eq 0 ]; then
if [ "$opt_live" = 1 ]; then
mount_debugfs
for ibrs_file in \
/sys/kernel/debug/ibrs_enabled \
/sys/kernel/debug/x86/ibrs_enabled \
/proc/sys/kernel/ibrs_enabled; do
if [ -e "$ibrs_file" ]; then
# if the file is there, we have IBRS compiled-in
# /sys/kernel/debug/ibrs_enabled: vanilla
# /sys/kernel/debug/x86/ibrs_enabled: RedHat (see https://access.redhat.com/articles/3311301)
# /proc/sys/kernel/ibrs_enabled: OpenSUSE tumbleweed
pstatus green YES pstatus green YES
ibrs_supported=1
ibrs_enabled=$(cat "$ibrs_file" 2>/dev/null)
break
fi
done
fi
if [ "$ibrs_supported" != 1 -a -n "$opt_map" ]; then
if grep -q spec_ctrl "$opt_map"; then
pstatus green YES
ibrs_supported=1
fi
fi
if [ "$ibrs_supported" != 1 ]; then
pstatus red NO
fi
_info_nol "* IBRS enabled for Kernel space: "
if [ "$opt_live" = 1 ]; then
# 0 means disabled
# 1 is enabled only for kernel space
# 2 is enabled for kernel and user space
case "$ibrs_enabled" in
"") [ "$ibrs_supported" = 1 ] && pstatus yellow UNKNOWN || pstatus red NO;;
0) pstatus red NO;;
1 | 2) pstatus green YES;;
*) pstatus yellow UNKNOWN;;
esac
else
pstatus blue N/A "not testable in offline mode"
fi
_info_nol "* IBRS enabled for User space: "
if [ "$opt_live" = 1 ]; then
case "$ibrs_enabled" in
"") [ "$ibrs_supported" = 1 ] && pstatus yellow UNKNOWN || pstatus red NO;;
0 | 1) pstatus red NO;;
2) pstatus green YES;;
*) pstatus yellow UNKNOWN;;
esac
else
pstatus blue N/A "not testable in offline mode"
fi
_info "* Mitigation 2"
_info_nol "* Kernel compiled with retpoline option: "
# We check the RETPOLINE kernel options
if [ -r "$opt_config" ]; then
if grep -q '^CONFIG_RETPOLINE=y' "$opt_config"; then
pstatus green YES
retpoline=1
else
pstatus red NO
fi
else
pstatus yellow UNKNOWN "couldn't read your kernel configuration"
fi
_info_nol "* Kernel compiled with a retpoline-aware compiler: "
# Now check if the compiler used to compile the kernel knows how to insert retpolines in generated asm
# For gcc, this is -mindirect-branch=thunk-extern (detected by the kernel makefiles)
# See gcc commit https://github.com/hjl-tools/gcc/commit/23b517d4a67c02d3ef80b6109218f2aadad7bd79
# In latest retpoline LKML patches, the noretpoline_setup symbol exists only if CONFIG_RETPOLINE is set
# *AND* if the compiler is retpoline-compliant, so look for that symbol
if [ -n "$opt_map" ]; then
# look for the symbol
if grep -qw noretpoline_setup "$opt_map"; then
retpoline_compiler=1
pstatus green YES "noretpoline_setup symbol found in System.map"
else
pstatus red NO
fi
elif [ -n "$vmlinux" ]; then
# look for the symbol
if which nm >/dev/null 2>&1; then
# the proper way: use nm and look for the symbol
if nm "$vmlinux" 2>/dev/null | grep -qw 'noretpoline_setup'; then
retpoline_compiler=1
pstatus green YES "noretpoline_setup found in vmlinux symbols"
else else
pstatus red NO pstatus red NO
fi fi
elif grep -q noretpoline_setup "$vmlinux"; then fi
# if we don't have nm, nevermind, the symbol name is long enough to not have
# any false positive using good old grep directly on the binary if [ "$insmod_msr" = 1 ]; then
retpoline_compiler=1 # if we used modprobe ourselves, rmmod the module
pstatus green YES "noretpoline_setup found in vmlinux" rmmod msr 2>/dev/null
else _debug "attempted to unload module msr, ret=$?"
fi
_info_nol "* Kernel support for IBRS: "
if [ "$opt_live" = 1 ]; then
mount_debugfs
for ibrs_file in \
/sys/kernel/debug/ibrs_enabled \
/sys/kernel/debug/x86/ibrs_enabled \
/proc/sys/kernel/ibrs_enabled; do
if [ -e "$ibrs_file" ]; then
# if the file is there, we have IBRS compiled-in
# /sys/kernel/debug/ibrs_enabled: vanilla
# /sys/kernel/debug/x86/ibrs_enabled: RedHat (see https://access.redhat.com/articles/3311301)
# /proc/sys/kernel/ibrs_enabled: OpenSUSE tumbleweed
pstatus green YES
ibrs_supported=1
ibrs_enabled=$(cat "$ibrs_file" 2>/dev/null)
_debug "ibrs: found $ibrs_file=$ibrs_enabled"
break
else
_debug "ibrs: file $ibrs_file doesn't exist"
fi
done
fi
if [ "$ibrs_supported" != 1 -a -n "$opt_map" ]; then
if grep -q spec_ctrl "$opt_map"; then
pstatus green YES
ibrs_supported=1
_debug "ibrs: found '*spec_ctrl*' symbol in $opt_map"
fi
fi
if [ "$ibrs_supported" != 1 ]; then
pstatus red NO pstatus red NO
fi fi
else
pstatus yellow UNKNOWN "couldn't find your kernel image or System.map" _info_nol "* IBRS enabled for Kernel space: "
if [ "$opt_live" = 1 ]; then
# 0 means disabled
# 1 is enabled only for kernel space
# 2 is enabled for kernel and user space
case "$ibrs_enabled" in
"") [ "$ibrs_supported" = 1 ] && pstatus yellow UNKNOWN || pstatus red NO;;
0) pstatus red NO;;
1 | 2) pstatus green YES;;
*) pstatus yellow UNKNOWN;;
esac
else
pstatus blue N/A "not testable in offline mode"
fi
_info_nol "* IBRS enabled for User space: "
if [ "$opt_live" = 1 ]; then
case "$ibrs_enabled" in
"") [ "$ibrs_supported" = 1 ] && pstatus yellow UNKNOWN || pstatus red NO;;
0 | 1) pstatus red NO;;
2) pstatus green YES;;
*) pstatus yellow UNKNOWN;;
esac
else
pstatus blue N/A "not testable in offline mode"
fi
_info "* Mitigation 2"
_info_nol "* Kernel compiled with retpoline option: "
# We check the RETPOLINE kernel options
if [ -r "$opt_config" ]; then
if grep -q '^CONFIG_RETPOLINE=y' "$opt_config"; then
pstatus green YES
retpoline=1
_debug "retpoline: found "$(grep '^CONFIG_RETPOLINE' "$opt_config")" in $opt_config"
else
pstatus red NO
fi
else
pstatus yellow UNKNOWN "couldn't read your kernel configuration"
fi
_info_nol "* Kernel compiled with a retpoline-aware compiler: "
# Now check if the compiler used to compile the kernel knows how to insert retpolines in generated asm
# For gcc, this is -mindirect-branch=thunk-extern (detected by the kernel makefiles)
# See gcc commit https://github.com/hjl-tools/gcc/commit/23b517d4a67c02d3ef80b6109218f2aadad7bd79
# In latest retpoline LKML patches, the noretpoline_setup symbol exists only if CONFIG_RETPOLINE is set
# *AND* if the compiler is retpoline-compliant, so look for that symbol
if [ -n "$opt_map" ]; then
# look for the symbol
if grep -qw noretpoline_setup "$opt_map"; then
retpoline_compiler=1
pstatus green YES "noretpoline_setup symbol found in System.map"
else
pstatus red NO
fi
elif [ -n "$vmlinux" ]; then
# look for the symbol
if which nm >/dev/null 2>&1; then
# the proper way: use nm and look for the symbol
if nm "$vmlinux" 2>/dev/null | grep -qw 'noretpoline_setup'; then
retpoline_compiler=1
pstatus green YES "noretpoline_setup found in vmlinux symbols"
else
pstatus red NO
fi
elif grep -q noretpoline_setup "$vmlinux"; then
# if we don't have nm, nevermind, the symbol name is long enough to not have
# any false positive using good old grep directly on the binary
retpoline_compiler=1
pstatus green YES "noretpoline_setup found in vmlinux"
else
pstatus red NO
fi
else
pstatus yellow UNKNOWN "couldn't find your kernel image or System.map"
fi
fi fi
if ! is_cpu_vulnerable 2; then # if we have the /sys interface, don't even check is_cpu_vulnerable ourselves, the kernel already does it
if [ "$sys_interface_available" = 0 ] && ! is_cpu_vulnerable 2; then
# override status & msg in case CPU is not vulnerable after all
pvulnstatus CVE-2017-5715 OK "your CPU vendor reported your CPU model as not vulnerable" pvulnstatus CVE-2017-5715 OK "your CPU vendor reported your CPU model as not vulnerable"
elif [ "$retpoline" = 1 -a "$retpoline_compiler" = 1 ]; then elif [ -z "$msg" ]; then
pvulnstatus CVE-2017-5715 OK "retpoline mitigate the vulnerability" # if msg is empty, sysfs check didn't fill it, rely on our own test
elif [ "$opt_live" = 1 ]; then if [ "$retpoline" = 1 -a "$retpoline_compiler" = 1 ]; then
if [ "$ibrs_enabled" = 1 -o "$ibrs_enabled" = 2 ]; then pvulnstatus CVE-2017-5715 OK "retpoline mitigate the vulnerability"
pvulnstatus CVE-2017-5715 OK "IBRS mitigates the vulnerability" elif [ "$opt_live" = 1 ]; then
if [ "$ibrs_enabled" = 1 -o "$ibrs_enabled" = 2 ]; then
pvulnstatus CVE-2017-5715 OK "IBRS mitigates the vulnerability"
else
pvulnstatus CVE-2017-5715 VULN "IBRS hardware + kernel support OR kernel with retpoline are needed to mitigate the vulnerability"
fi
else else
pvulnstatus CVE-2017-5715 VULN "IBRS hardware + kernel support OR kernel with retpoline are needed to mitigate the vulnerability" if [ "$ibrs_supported" = 1 ]; then
pvulnstatus CVE-2017-5715 OK "offline mode: IBRS will mitigate the vulnerability if enabled at runtime"
else
pvulnstatus CVE-2017-5715 VULN "IBRS hardware + kernel support OR kernel with retpoline are needed to mitigate the vulnerability"
fi
fi fi
else else
if [ "$ibrs_supported" = 1 ]; then pvulnstatus CVE-2017-5715 "$status" "$msg"
pvulnstatus CVE-2017-5715 OK "offline mode: IBRS will mitigate the vulnerability if enabled at runtime"
else
pvulnstatus CVE-2017-5715 VULN "IBRS hardware + kernel support OR kernel with retpoline are needed to mitigate the vulnerability"
fi
fi fi
} }
@ -736,88 +822,117 @@ check_variant2()
check_variant3() check_variant3()
{ {
_info "\033[1;34mCVE-2017-5754 [rogue data cache load] aka 'Meltdown' aka 'Variant 3'\033[0m" _info "\033[1;34mCVE-2017-5754 [rogue data cache load] aka 'Meltdown' aka 'Variant 3'\033[0m"
_info_nol "* Kernel supports Page Table Isolation (PTI): "
kpti_support=0 status=UNK
kpti_can_tell=0 sys_interface_available=0
if [ -n "$opt_config" ]; then msg=''
kpti_can_tell=1 if sys_interface_check "/sys/devices/system/cpu/vulnerabilities/meltdown"; then
if grep -Eq '^(CONFIG_PAGE_TABLE_ISOLATION|CONFIG_KAISER)=y' "$opt_config"; then # this kernel has the /sys interface, trust it over everything
kpti_support=1 sys_interface_available=1
fi else
fi _info_nol "* Kernel supports Page Table Isolation (PTI): "
if [ "$kpti_support" = 0 -a -n "$opt_map" ]; then kpti_support=0
# it's not an elif: some backports don't have the PTI config but still include the patch kpti_can_tell=0
# so we try to find an exported symbol that is part of the PTI patch in System.map if [ -n "$opt_config" ]; then
kpti_can_tell=1 kpti_can_tell=1
if grep -qw kpti_force_enabled "$opt_map"; then if grep -Eq '^(CONFIG_PAGE_TABLE_ISOLATION|CONFIG_KAISER)=y' "$opt_config"; then
kpti_support=1 _debug "kpti_support: found option "$(grep -E '^(CONFIG_PAGE_TABLE_ISOLATION|CONFIG_KAISER)=y' "$opt_config")" in $opt_config"
fi
fi
if [ "$kpti_support" = 0 -a -n "$vmlinux" ]; then
# same as above but in case we don't have System.map and only vmlinux, look for the
# nopti option that is part of the patch (kernel command line option)
kpti_can_tell=1
if ! which strings >/dev/null 2>&1; then
pstatus yellow UNKNOWN "missing 'strings' tool, please install it, usually it's in the binutils package"
else
if strings "$vmlinux" | grep -qw nopti; then
kpti_support=1 kpti_support=1
fi fi
fi fi
fi if [ "$kpti_support" = 0 -a -n "$opt_map" ]; then
# it's not an elif: some backports don't have the PTI config but still include the patch
if [ "$kpti_support" = 1 ]; then # so we try to find an exported symbol that is part of the PTI patch in System.map
pstatus green YES kpti_can_tell=1
elif [ "$kpti_can_tell" = 1 ]; then if grep -qw kpti_force_enabled "$opt_map"; then
pstatus red NO _debug "kpti_support: found kpti_force_enabled in $opt_map"
else kpti_support=1
pstatus yellow UNKNOWN "couldn't read your kernel configuration nor System.map file" fi
fi
mount_debugfs
_info_nol "* PTI enabled and active: "
if [ "$opt_live" = 1 ]; then
if grep ^flags /proc/cpuinfo | grep -qw pti; then
# vanilla PTI patch sets the 'pti' flag in cpuinfo
kpti_enabled=1
elif grep ^flags /proc/cpuinfo | grep -qw kaiser; then
# kernel line 4.9 sets the 'kaiser' flag in cpuinfo
kpti_enabled=1
elif [ -e /sys/kernel/debug/x86/pti_enabled ]; then
# RedHat Backport creates a dedicated file, see https://access.redhat.com/articles/3311301
kpti_enabled=$(cat /sys/kernel/debug/x86/pti_enabled 2>/dev/null)
elif dmesg | grep -Eq 'Kernel/User page tables isolation: enabled|Kernel page table isolation enabled'; then
# if we can't find the flag, grep dmesg output
kpti_enabled=1
elif [ -r /var/log/dmesg ] && grep -Eq 'Kernel/User page tables isolation: enabled|Kernel page table isolation enabled' /var/log/dmesg; then
# if we can't find the flag in dmesg output, grep in /var/log/dmesg when readable
kpti_enabled=1
else
kpti_enabled=0
fi fi
if [ "$kpti_enabled" = 1 ]; then if [ "$kpti_support" = 0 -a -n "$vmlinux" ]; then
pstatus green YES # same as above but in case we don't have System.map and only vmlinux, look for the
else # nopti option that is part of the patch (kernel command line option)
pstatus red NO kpti_can_tell=1
if ! which strings >/dev/null 2>&1; then
pstatus yellow UNKNOWN "missing 'strings' tool, please install it, usually it's in the binutils package"
else
if strings "$vmlinux" | grep -qw nopti; then
_debug "kpti_support: found nopti string in $vmlinux"
kpti_support=1
fi
fi
fi fi
else
pstatus blue N/A "can't verify if PTI is enabled in offline mode"
fi
if ! is_cpu_vulnerable 3; then
pvulnstatus CVE-2017-5754 OK "your CPU vendor reported your CPU model as not vulnerable"
elif [ "$opt_live" = 1 ]; then
if [ "$kpti_enabled" = 1 ]; then
pvulnstatus CVE-2017-5754 OK "PTI mitigates the vulnerability"
else
pvulnstatus CVE-2017-5754 VULN "PTI is needed to mitigate the vulnerability"
fi
else
if [ "$kpti_support" = 1 ]; then if [ "$kpti_support" = 1 ]; then
pvulnstatus CVE-2017-5754 OK "offline mode: PTI will mitigate the vulnerability if enabled at runtime" pstatus green YES
elif [ "$kpti_can_tell" = 1 ]; then
pstatus red NO
else else
pvulnstatus CVE-2017-5754 VULN "PTI is needed to mitigate the vulnerability" pstatus yellow UNKNOWN "couldn't read your kernel configuration nor System.map file"
fi fi
mount_debugfs
_info_nol "* PTI enabled and active: "
if [ "$opt_live" = 1 ]; then
dmesg_grep="Kernel/User page tables isolation: enabled"
dmesg_grep="$dmesg_grep|Kernel page table isolation enabled"
dmesg_grep="$dmesg_grep|x86/pti: Unmapping kernel while in userspace"
if grep ^flags /proc/cpuinfo | grep -qw pti; then
# vanilla PTI patch sets the 'pti' flag in cpuinfo
_debug "kpti_enabled: found 'pti' flag in /proc/cpuinfo"
kpti_enabled=1
elif grep ^flags /proc/cpuinfo | grep -qw kaiser; then
# kernel line 4.9 sets the 'kaiser' flag in cpuinfo
_debug "kpti_enabled: found 'kaiser' flag in /proc/cpuinfo"
kpti_enabled=1
elif [ -e /sys/kernel/debug/x86/pti_enabled ]; then
# RedHat Backport creates a dedicated file, see https://access.redhat.com/articles/3311301
kpti_enabled=$(cat /sys/kernel/debug/x86/pti_enabled 2>/dev/null)
_debug "kpti_enabled: file /sys/kernel/debug/x86/pti_enabled exists and says: $kpti_enabled"
elif dmesg | grep -Eq "$dmesg_grep"; then
# if we can't find the flag, grep dmesg output
_debug "kpti_enabled: found hint in dmesg: "$(dmesg | grep -E "$dmesg_grep")
kpti_enabled=1
elif [ -r /var/log/dmesg ] && grep -Eq "$dmesg_grep" /var/log/dmesg; then
# if we can't find the flag in dmesg output, grep in /var/log/dmesg when readable
_debug "kpti_enabled: found hint in /var/log/dmesg: "$(grep -E "$dmesg_grep" /var/log/dmesg)
kpti_enabled=1
else
_debug "kpti_enabled: couldn't find any hint that PTI is enabled"
kpti_enabled=0
fi
if [ "$kpti_enabled" = 1 ]; then
pstatus green YES
else
pstatus red NO
fi
else
pstatus blue N/A "can't verify if PTI is enabled in offline mode"
fi
fi
# if we have the /sys interface, don't even check is_cpu_vulnerable ourselves, the kernel already does it
cve='CVE-2017-5754'
if [ "$sys_interface_available" = 0 ] && ! is_cpu_vulnerable 3; then
# override status & msg in case CPU is not vulnerable after all
pvulnstatus $cve OK "your CPU vendor reported your CPU model as not vulnerable"
elif [ -z "$msg" ]; then
# if msg is empty, sysfs check didn't fill it, rely on our own test
if [ "$opt_live" = 1 ]; then
if [ "$kpti_enabled" = 1 ]; then
pvulnstatus $cve OK "PTI mitigates the vulnerability"
else
pvulnstatus $cve VULN "PTI is needed to mitigate the vulnerability"
fi
else
if [ "$kpti_support" = 1 ]; then
pvulnstatus $cve OK "offline mode: PTI will mitigate the vulnerability if enabled at runtime"
else
pvulnstatus $cve VULN "PTI is needed to mitigate the vulnerability"
fi
fi
else
pvulnstatus $cve "$status" "$msg"
fi fi
} }
@ -853,3 +968,7 @@ if [ "$opt_batch" = 1 -a "$opt_batch_format" = "nrpe" ]; then
[ "$nrpe_unknown" = 1 ] && exit 3 # unknown [ "$nrpe_unknown" = 1 ] && exit 3 # unknown
exit 0 # ok exit 0 # ok
fi fi
if [ "$opt_batch" = 1 -a "$opt_batch_format" = "json" ]; then
_echo 0 ${json_output%?}]
fi